۱- از آنجا که دادههای تابلویی به افراد، بنگاهها، ایالات، کشورها و از این قبیل واحدها طی زمان ارتباط دارند، وجود ناهمسانی واریانس در این واحدها محدود میشود. تکنیکهای تخمین با دادههای تابلویی، همانگونه که نشان ئائه خواهد شد میتوانند این ناهمسانی واریانس را با متغیرهای تکی و خاص مورد ملاحظه و بررسی قرار دهند.
۲- با ترکیب مشاهدات سری زمانی و مقطعی، دادههای تابلویی با اطلاعات بیشتر، تغییر پذیری بیشتر، همخطی کمتر میان متغیرها، درجات آزادی بیشتر و کارایی بیشتری را ارائه میدهند.
۳- با مطالعه مشاهدات مقطعی تکراری، دادههای تابلویی به منظور مطالعه پویای تغییرات، مناسبتر و بهترند.
۴- دادههای تابلویی تاثیراتی را که نمیتوان به سادگی در دادههایمقطعی وسری زمانی مشاهده کرد، بهتر نشان میدهند.
۵- دادههای تابلویی محقق را قادر میسازد تا مدلهای رفتاری پیچیده را بهتر مطالعه کند.
دادههای تابلویی با ارائه داده برای هزاران واحد، میتواند تورشی را که ممکن است در نتیجه لحاظ افراد یا بنگاهها (به صورت تجمعی و کلی) حاصل شود، حداقل سازند.
برای دانلود متن کامل پایان نامه به سایت tinoz.ir مراجعه کنید.
به طور کلی باید گفت دادههای تجربی را به شکلی غنی میسازد که در صورت استفاده از دادههایسری زمانی یا مقطعی این امکان وجود ندارد.
۳-۱۱- آزمون های انتخاب مدل در پنل دیتا
۳-۱۱-۱- آزمون چاو (آزمون F)
در مورد دادههای ترکیبی ابتدا آزمون F(آزمون چاو) به منظور انتخاب شیوه تخمین مدل از بین دو راهکار Pooling وPanel انجام می شود.
در داده های ترکیبی اثرات زمانی و مقطعی داده ها و همچنین اثرات همزمان آنها آزمون می شود.طبق مدل اثرات ثابت–زمانی برای هر یک از سالها یک عرض از مبدا و طبق مدل اثرات ثابت–مقطعی برای هر یک از این شرکتها یک عرض از مبدا ارائه میشود.حالبرای اینکه مشخص شود این عرض از مبداها از لحاظ آماری باهم تفاوت معنادار دارند یا خیر، آزمون چاو را به کار میبرند.
تمام عرض از مبداها با هم برابرند↔Pooled
: عرض از مبداها با هم تفاوت دارند↔ مدل اثرات ثابت زمانی یا مقطعی یا هر دو
که مقادیر ثابت مدل (عرض از مبدا) در هریک از حالت های فوق به شرح زیر می باشد:
Pooled↔
Panelازنوع اثرات ثابت زمانی↔
Panelازنوع اثرات ثابت مقطعی↔
panel از نوع اثرات ثابت زمانی ومقطعی↔
۳-۱۱-۲- آزمون هاسمن
تاریخ گذشته ی هر شرکت یا مقطع را در مدل پانل در برداردکه برای تفسیر آن دو رویکرد متفاوت وجود دارد.دوروش Fixed Effect وEffect Random دو رویکرد متفاوت برای برآورد میباشد. اگر فرض شود تمام افراد یا مقاطع در پانل، کاملا همگن هستند در این صورت لازم نیست نگران عرض از مبداهای مختلف برای هر فرد یا مقطع بود. در حقیقت، رویکرد پانل دیتا به خوبی میتواند نا هماهنگیهای میان افراد را نشان دهد. این نکته یکی از مزایای مدل دادههای پانل نسبت به مدلهای مقطعی یا سری زمانی صرف است.
اگر گفته ی هاولمو را بپذیرفته شود که جامعه از بی نهایت تصمیم درست شده است نه بی نهایت افراد ،در این صورت نباید را مشروط و مقید بدانیم بهتر است آنرا جمله ی تصادفی تلقی نمود نه ثابت.رویکرد اثر ثابت را جمله ای ثابت و مخصوص هر فرد یا مقطع در مدل رگرسیونی فرض میکند. مدل اثر تصادفی فرض می کند یک جمله تصادفی برای هر گروه است، اما در هر دورهی زمانی، از این توزیع تصادفی ها فقط یک رخداد به طور یکسان در هر دوره در مدل رگرسیونی وارد میشود. به عبارت دیگر برای کل دورهی زمانی، برای هر فرد فقط یک وجود دارد. برای انتخاب یکی از این دو روش از آزمون هاسمن استفاده میشود. اگرProb کوچکتر از یک دهم باشد مدل اثر ثابت در سطح ٩۰درصد به بالا پذیرفته میشود اما اگر بزرگتر از یک دهم باشد در این صورت مدل اثر تصادفی پذیرفته میشود.
۳-۱۱-۳- آزمون White cross-section
اگر ناهمگنی پارامترها میان افراد و مقاطع یا در طول سری زمانی را نادیده گدفته شود میتواند به برآوردهای ناسازگار یا بی معنی از پارامترها منجر شود .پارامتر ممکن است برای افراد و مقاطع مختلف متفاوت باشد، اگرچه در طول زمان ثابت بماند. اگر این فرض اتخاذ شود، ممکن است انواع توزیعهای نمونه گیری رخ دهد. این توزیع های نمونه گیری می تواند تا حد زیادی رگرسیون حداقل مربعات روی را با بهره گرفتن از NT مشاهده گمراه کننده کند. برای رفع مشکل واریانس ناهمسانی یا بهبود برآوردها از آزمونWhitecross-section استفاده میشود.
قدرت جذاب پانل دیتا ناشی از توانایی نظری آن در جداسازی اثرات، اقدامات و رفتار خاص فردی یا سیاستهای عام تر است. این توانایی نظری بر این فرض استوار است که دادههای اقتصادی از یک آزمایش کنترل شده به دست میآید که در آن رخدادها، متغیرهایی تصادفی با توزیع احتمال است. این رخدادها تابعی هموار از متغیرهایمختلف است که شرایط آزمایش را توصیف میکند. اگر داده های موجود حقیقتا از آزمایش های ساده کنترل شده به دست آید، می توان از روشهای استاندارد آماری استفاده کرد.
عکس مرتبط با اقتصاد
۳-۱۲- آزمون معنی دار بودن مدل مربوط به فرضیهها
۳-۱۲-۱- آماره F
جهت بررسی معنیدار بودن مدلهای رگرسیون استفاده شده در تحقیق، آزمون تمامی ضرایب آن ها که دلالت بر معنی دار بودن روابط بین متغیرهای مستقل و متغیر وابسته است از آماره F استفاده شده است. با مقایسه آماره F که طبق فرمول زیر بدست می آید و F جدول که با درجات آزادی ۱-K و K-nدر سطح خطای ۵% محاسبه شده، مدل فرضیه مورد بررسی قرار گرفته است.
از آنجائیکه در این تحقیق برای آزمون آماری، فرضیه به عنوان فرض جایگزین() در نظر گرفته شده است، زمانی فرضیه تأیید میشود که F محاسبه شده (طبق محاسبات نرم افزار Eviews) از F جدول بزرگتر باشد.
۳-۱۲-۲- آزمون خود همبستگی
خودهمبستگی زمانی رخ میدهد که خطاها با هم رابطه داشته باشند. به بیان دیگر جزء اخلال مربوط به یک مشاهده تحت تأثیر جزء اخلال یک مشاهده دیگر قرار دارد. اغلب در دادههای مقطعی انتظار میرود که متغیر مستقل یک مشاهده فقط بر متغیر وابسته همان مشاهده تأثیر گذارد و با مشاهدات دیگر ارتباطی نداشته باشد (بیدرام، ۱۳۸۱).
برای تشخیص خود همبستگی از آماره دوربین– واتسون استفاده میشود که طبق فرمول زیر محاسبه میگردد.
=۲(۱-p)
جمله خطا در زمان t، : جمله خطا در زمان t-1 است.
چنانچه این آماره با توجه به سطح اطمینان ۹۵%، نزدیک به عدد ۲ باشد، خود همبستگی وجود ندارد (بیدرام،۱۳۸۱).
لازم به ذکر است که در این تحقیق از دادهها به صورت ترکیبی سری زمانی و مقطعی (panal) استفاده شده است. هم چنین در استفاده از نرم افزارEviews از تبیین GLS برای تصحیح ناهمسانی واریانس، و از متغیرهای خودرگرسیو[۵۶]AR(P) جهت برطرف کردن مشکل خود همبستگی استفاده شده است.
۳-۱۳- آزمون فرضیهها
۳-۱۳-۱-ضریب همبستگی:ضریب همبستگی با توجه به نوع نمودار رگرسیون و نوع نمودار پراکنش دارای حالات مختلفی است و همواره بین ۱و۱- تعریف میشود و هر چه قدر مطلق ضریب همبستگی به عدد ۱ نزدیکتر باشد میتوان گفت اختلاف مقادیر پیش بینی شده با مقادیر واقعی کمتر خواهد بود، یعنی معادله رگرسیوناز خطای کمتر و اعتبار بیشتری برخوردار است. ضریب همبستگی به صورت زیر محاسبه میشود :
۳-۱۳-۲- ضریب تشخیص یا تبیین: شاخصی است که نشان دهنده اعتبار معادله رگرسیون است به عبارت دیگر این شاخص درصد تغییرات متغیروابسته را توسط متغیرهای مستقل را نشان میدهد. یعنی مقدار آن، بیانگر درصد انطباق مقادیر پیش بینی شده با مقادیر واقعی خواهد بود. ضریب تشخیص عبارت است:
ملاک انتخاب متغیر مستقل مناسب ضریب تشخیص است. چنانچه بخواهیم از بین متغیرهای مستقل مختلف، بهترین آن ها را انتخاب کنیم، ملاک را بر بزرگترین ضریب تشخص خواهیم گذاشت. اگر بهترین متغیر مستقل انتخاب شده از سطح قابل قبول ضریب تشخیص برخوردار نباشد، به معنی آن است که تعمیم روند گذشته و پیش بینیy بر اساس یک متغیر مستقل امکان پذیر نیست. بلکه باید ترکیبی از متغیرهای مستقل (حداقل ۲ متغیر) را پیدا نمود تا ضریب تشخیص را به حد قابل قبول رساند. در این حالت از معادله رگرسیون چندگانه استفاده میشود. در مدل رگرسیون چندگانه به جای ضریب همبستگی معمولی از ضریب همبستگی چندگانه استفاده میشود. این ضریب نشان میدهد که شدت رابطه متغیرهای مستقل به طور کلی با متغیر وابسته به چه میزان است اگر ضریب همبستگی چندگانه را به توان ۲ رسیده شود ضریب تعیین به دست میآید که معرف میزان تغیر پذیری (انحراف) در متغیر وابسته (y) است که به وسیله معادله رگرسیون توضیح داده میشود . سومین مقداری که توسط نرم افزارEVIEWS محاسبه میشود، ضریب تعیین تعدیل شده میباشد که فرمول آن به صورت زیر است:
در واقع این عامل باعث می شود که اریبی که در ضریب تعیین ناشی از حجم نمونه (n) است برطرف شود. تفاوت این ضریب با ضریب تعین در عامل (۲-n)/(1/n) میباشد. چنانچه مقدار n بزرگ باشد مقدار (۱-n)/(2/n) به یک نزدیک شده و تفاوت و به صفر میرسد. عامل دیگری که به وسیله نرمافزار محاسبه میگردد خطای معیار است که میزان پراکندگی دادهها را حول رگرسیون برآوردی نشان میدهد. در این تحقیق با توجه به نوع دادهها و روشهای تجزیه و تحلیل آماری موجود، از روش دادههای ترکیبی استفاده شده است. زیرا به منظور بررسی فرضیه ها اطلاعات متغیرهای مستقل و وابسته از دو جنبه متفاوت مورد بررسی قرار میگیرند؛از یک سو، این متغیرها در میان شرکتها مختلف و از سوی دیگر، در دوره زمانی۱۳۹۱-۱۳۸۵آزمون میشوند.
۳-۱۳-۳- آزمون معنیدار بودن متغیر مستقل
برای بررسی معنیدار بودن ضرایب متغیرهای مستقل در هر مدل از آماره tاستفاده شده است. برای محاسبه این آماره از فرمول زیر استفاده میشود.
: ضریب تخمینی، : انحراف معیار ضریب تخمینی،
: مجذور اختلاف بین مشاهدات واقعی و برآوردی، n: مقدار مشاهدات، k: تعداد پارامترها.
آماره tبدست آمده با t جدول که با درجه آزادی n-K در سطح اطمینان ۹۰%، ۹۵% و ۹۹% محاسبه شده مقایسه میشود، چنانچه قدر مطلق t محاسبه شده از t جدول بزرگ تر باشد، ضریب مورد نظر معنیدار خواهد بود که دلالت بر وجود ارتباط بین متغیر مستقل و وابسته است.
فصل چهارم
تجزیه و تحلیل داده ها
۴-۱- مقدمه
در فصل قبل روش تحقیق ،نحوه گردآوری داده ها، متغیرهای تحقیق، مدل های مورد استفاده در تحقیق و آزمونهای مورد استفاده بیان گردید . پس از آنکه داده ها گردآوری ، استخراج و طبقه بندی گردید مرحله جدیدی از فرایند تحقیق که مرحله تجزیه و تحلیل داده ها نامیده می شود آغاز می گردد.این مرحله از تحقیق، از اهمیت زیادی برخوردار است زیرا نشان دهنده تلاش ها و زحمات گذشته است در این مرحله با بهره گرفتن از روش های مختلف و با تکیه بر معیار عقل سعی می شود اطلاعات و داده ها در جهت آزمون فرضیه و ارزیابی آن مورد استفاده قرار گیرد. در این مرحله آنچه مهم است این است که باید اطلاعات و داده ها را در مسیر هدف تحقیق ، پاسخگویی به سوالات تحقیق و نیز ارزیابی فرضیه ها، مورد تجزیه و تحلیل قرار داد.
۴-۲- تجزیه وتحلیل نتایج
دراین تحقیق به بررسی تاثیر اندازه موسسه حسابرسی با کیفیت حسابرسی پرداخته می شود متغیر اندازه موسسه حسابرسی به عنوان فرضیه های تحقیق به صورت جداگانه مطرح و جهت آزمون فرضیه ها از روش همبستگی بین متغیرها و معادلات رگرسیون از طریق روش پانل دیتا استفاده می شود.
در ابتدا آمار توصیفی متغیرهای مورد نظر ارائه می شود و سپس فرضیه های تحقیق آزمون می شود.
جدول ۴-۱ آمار توصیفی متغیرها
حق انحصاری © 2021 مطالب علمی گلچین شده. کلیه حقوق محف